3.6.83 \(\int \frac {(a+a \sin (e+f x))^{5/2}}{(c+d \sin (e+f x))^{3/2}} \, dx\) [583]

Optimal. Leaf size=180 \[ \frac {a^{5/2} (3 c-5 d) \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\right )}{d^{5/2} f}+\frac {2 a^2 (c-d) \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{d (c+d) f \sqrt {c+d \sin (e+f x)}}-\frac {a^3 (3 c-d) \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{d^2 (c+d) f \sqrt {a+a \sin (e+f x)}} \]

[Out]

a^(5/2)*(3*c-5*d)*arctan(cos(f*x+e)*a^(1/2)*d^(1/2)/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(1/2))/d^(5/2)/f+2
*a^2*(c-d)*cos(f*x+e)*(a+a*sin(f*x+e))^(1/2)/d/(c+d)/f/(c+d*sin(f*x+e))^(1/2)-a^3*(3*c-d)*cos(f*x+e)*(c+d*sin(
f*x+e))^(1/2)/d^2/(c+d)/f/(a+a*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.29, antiderivative size = 180, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {2841, 3060, 2854, 211} \begin {gather*} \frac {a^{5/2} (3 c-5 d) \text {ArcTan}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {a \sin (e+f x)+a} \sqrt {c+d \sin (e+f x)}}\right )}{d^{5/2} f}-\frac {a^3 (3 c-d) \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{d^2 f (c+d) \sqrt {a \sin (e+f x)+a}}+\frac {2 a^2 (c-d) \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{d f (c+d) \sqrt {c+d \sin (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^(5/2)/(c + d*Sin[e + f*x])^(3/2),x]

[Out]

(a^(5/2)*(3*c - 5*d)*ArcTan[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[a + a*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])
])/(d^(5/2)*f) + (2*a^2*(c - d)*Cos[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(d*(c + d)*f*Sqrt[c + d*Sin[e + f*x]])
- (a^3*(3*c - d)*Cos[e + f*x]*Sqrt[c + d*Sin[e + f*x]])/(d^2*(c + d)*f*Sqrt[a + a*Sin[e + f*x]])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2841

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-b^2)*(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c
 + a*d))), x] + Dist[b^2/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1
)*Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b*c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{
a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1
] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2854

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*(b/f), Subst[Int[1/(b + d*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]))
], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3060

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt
[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+a \sin (e+f x))^{5/2}}{(c+d \sin (e+f x))^{3/2}} \, dx &=\frac {2 a^2 (c-d) \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{d (c+d) f \sqrt {c+d \sin (e+f x)}}-\frac {(2 a) \int \frac {\sqrt {a+a \sin (e+f x)} \left (\frac {1}{2} a (c-3 d)-\frac {1}{2} a (3 c-d) \sin (e+f x)\right )}{\sqrt {c+d \sin (e+f x)}} \, dx}{d (c+d)}\\ &=\frac {2 a^2 (c-d) \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{d (c+d) f \sqrt {c+d \sin (e+f x)}}-\frac {a^3 (3 c-d) \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{d^2 (c+d) f \sqrt {a+a \sin (e+f x)}}-\frac {\left (a^2 (3 c-5 d)\right ) \int \frac {\sqrt {a+a \sin (e+f x)}}{\sqrt {c+d \sin (e+f x)}} \, dx}{2 d^2}\\ &=\frac {2 a^2 (c-d) \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{d (c+d) f \sqrt {c+d \sin (e+f x)}}-\frac {a^3 (3 c-d) \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{d^2 (c+d) f \sqrt {a+a \sin (e+f x)}}+\frac {\left (a^3 (3 c-5 d)\right ) \text {Subst}\left (\int \frac {1}{a+d x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\right )}{d^2 f}\\ &=\frac {a^{5/2} (3 c-5 d) \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\right )}{d^{5/2} f}+\frac {2 a^2 (c-d) \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{d (c+d) f \sqrt {c+d \sin (e+f x)}}-\frac {a^3 (3 c-d) \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{d^2 (c+d) f \sqrt {a+a \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.71, size = 263, normalized size = 1.46 \begin {gather*} \frac {(a (1+\sin (e+f x)))^{5/2} \left (\frac {(-3 c+5 d) \left (2 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {d} \sin \left (\frac {1}{4} (2 e-\pi +2 f x)\right )}{\sqrt {c+d \sin (e+f x)}}\right )+\tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {d} \cos \left (\frac {1}{4} (2 e-\pi +2 f x)\right )}{\sqrt {c+d \sin (e+f x)}}\right )-\log \left (\sqrt {2} \sqrt {d} \cos \left (\frac {1}{4} (2 e-\pi +2 f x)\right )+\sqrt {c+d \sin (e+f x)}\right )\right )}{d^{5/2}}-\frac {2 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (3 c^2-3 c d+2 d^2+d (c+d) \sin (e+f x)\right )}{d^2 (c+d) \sqrt {c+d \sin (e+f x)}}\right )}{2 f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[e + f*x])^(5/2)/(c + d*Sin[e + f*x])^(3/2),x]

[Out]

((a*(1 + Sin[e + f*x]))^(5/2)*(((-3*c + 5*d)*(2*ArcTan[(Sqrt[2]*Sqrt[d]*Sin[(2*e - Pi + 2*f*x)/4])/Sqrt[c + d*
Sin[e + f*x]]] + ArcTanh[(Sqrt[2]*Sqrt[d]*Cos[(2*e - Pi + 2*f*x)/4])/Sqrt[c + d*Sin[e + f*x]]] - Log[Sqrt[2]*S
qrt[d]*Cos[(2*e - Pi + 2*f*x)/4] + Sqrt[c + d*Sin[e + f*x]]]))/d^(5/2) - (2*(Cos[(e + f*x)/2] - Sin[(e + f*x)/
2])*(3*c^2 - 3*c*d + 2*d^2 + d*(c + d)*Sin[e + f*x]))/(d^2*(c + d)*Sqrt[c + d*Sin[e + f*x]])))/(2*f*(Cos[(e +
f*x)/2] + Sin[(e + f*x)/2])^5)

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {\left (a +a \sin \left (f x +e \right )\right )^{\frac {5}{2}}}{\left (c +d \sin \left (f x +e \right )\right )^{\frac {3}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^(5/2)/(c+d*sin(f*x+e))^(3/2),x)

[Out]

int((a+a*sin(f*x+e))^(5/2)/(c+d*sin(f*x+e))^(3/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(5/2)/(c+d*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^(5/2)/(d*sin(f*x + e) + c)^(3/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 625 vs. \(2 (169) = 338\).
time = 0.72, size = 1723, normalized size = 9.57 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(5/2)/(c+d*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

[1/8*((3*a^2*c^3 + a^2*c^2*d - 7*a^2*c*d^2 - 5*a^2*d^3 - (3*a^2*c^2*d - 2*a^2*c*d^2 - 5*a^2*d^3)*cos(f*x + e)^
2 + (3*a^2*c^3 - 2*a^2*c^2*d - 5*a^2*c*d^2)*cos(f*x + e) + (3*a^2*c^3 + a^2*c^2*d - 7*a^2*c*d^2 - 5*a^2*d^3 +
(3*a^2*c^2*d - 2*a^2*c*d^2 - 5*a^2*d^3)*cos(f*x + e))*sin(f*x + e))*sqrt(-a/d)*log((128*a*d^4*cos(f*x + e)^5 +
 a*c^4 + 4*a*c^3*d + 6*a*c^2*d^2 + 4*a*c*d^3 + a*d^4 + 128*(2*a*c*d^3 - a*d^4)*cos(f*x + e)^4 - 32*(5*a*c^2*d^
2 - 14*a*c*d^3 + 13*a*d^4)*cos(f*x + e)^3 - 32*(a*c^3*d - 2*a*c^2*d^2 + 9*a*c*d^3 - 4*a*d^4)*cos(f*x + e)^2 -
8*(16*d^4*cos(f*x + e)^4 - c^3*d + 17*c^2*d^2 - 59*c*d^3 + 51*d^4 + 24*(c*d^3 - d^4)*cos(f*x + e)^3 - 2*(5*c^2
*d^2 - 26*c*d^3 + 33*d^4)*cos(f*x + e)^2 - (c^3*d - 7*c^2*d^2 + 31*c*d^3 - 25*d^4)*cos(f*x + e) + (16*d^4*cos(
f*x + e)^3 + c^3*d - 17*c^2*d^2 + 59*c*d^3 - 51*d^4 - 8*(3*c*d^3 - 5*d^4)*cos(f*x + e)^2 - 2*(5*c^2*d^2 - 14*c
*d^3 + 13*d^4)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)*sqrt(-a/d) + (a*c
^4 - 28*a*c^3*d + 230*a*c^2*d^2 - 476*a*c*d^3 + 289*a*d^4)*cos(f*x + e) + (128*a*d^4*cos(f*x + e)^4 + a*c^4 +
4*a*c^3*d + 6*a*c^2*d^2 + 4*a*c*d^3 + a*d^4 - 256*(a*c*d^3 - a*d^4)*cos(f*x + e)^3 - 32*(5*a*c^2*d^2 - 6*a*c*d
^3 + 5*a*d^4)*cos(f*x + e)^2 + 32*(a*c^3*d - 7*a*c^2*d^2 + 15*a*c*d^3 - 9*a*d^4)*cos(f*x + e))*sin(f*x + e))/(
cos(f*x + e) + sin(f*x + e) + 1)) + 8*(3*a^2*c^2 - 4*a^2*c*d + a^2*d^2 + (a^2*c*d + a^2*d^2)*cos(f*x + e)^2 +
(3*a^2*c^2 - 3*a^2*c*d + 2*a^2*d^2)*cos(f*x + e) - (3*a^2*c^2 - 4*a^2*c*d + a^2*d^2 - (a^2*c*d + a^2*d^2)*cos(
f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c))/((c*d^3 + d^4)*f*cos(f*x + e)^2 - (
c^2*d^2 + c*d^3)*f*cos(f*x + e) - (c^2*d^2 + 2*c*d^3 + d^4)*f - ((c*d^3 + d^4)*f*cos(f*x + e) + (c^2*d^2 + 2*c
*d^3 + d^4)*f)*sin(f*x + e)), 1/4*((3*a^2*c^3 + a^2*c^2*d - 7*a^2*c*d^2 - 5*a^2*d^3 - (3*a^2*c^2*d - 2*a^2*c*d
^2 - 5*a^2*d^3)*cos(f*x + e)^2 + (3*a^2*c^3 - 2*a^2*c^2*d - 5*a^2*c*d^2)*cos(f*x + e) + (3*a^2*c^3 + a^2*c^2*d
 - 7*a^2*c*d^2 - 5*a^2*d^3 + (3*a^2*c^2*d - 2*a^2*c*d^2 - 5*a^2*d^3)*cos(f*x + e))*sin(f*x + e))*sqrt(a/d)*arc
tan(1/4*(8*d^2*cos(f*x + e)^2 - c^2 + 6*c*d - 9*d^2 - 8*(c*d - d^2)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqr
t(d*sin(f*x + e) + c)*sqrt(a/d)/(2*a*d^2*cos(f*x + e)^3 - (3*a*c*d - a*d^2)*cos(f*x + e)*sin(f*x + e) - (a*c^2
 - a*c*d + 2*a*d^2)*cos(f*x + e))) + 4*(3*a^2*c^2 - 4*a^2*c*d + a^2*d^2 + (a^2*c*d + a^2*d^2)*cos(f*x + e)^2 +
 (3*a^2*c^2 - 3*a^2*c*d + 2*a^2*d^2)*cos(f*x + e) - (3*a^2*c^2 - 4*a^2*c*d + a^2*d^2 - (a^2*c*d + a^2*d^2)*cos
(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c))/((c*d^3 + d^4)*f*cos(f*x + e)^2 -
(c^2*d^2 + c*d^3)*f*cos(f*x + e) - (c^2*d^2 + 2*c*d^3 + d^4)*f - ((c*d^3 + d^4)*f*cos(f*x + e) + (c^2*d^2 + 2*
c*d^3 + d^4)*f)*sin(f*x + e))]

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**(5/2)/(c+d*sin(f*x+e))**(3/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3004 deep

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(5/2)/(c+d*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{5/2}}{{\left (c+d\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(e + f*x))^(5/2)/(c + d*sin(e + f*x))^(3/2),x)

[Out]

int((a + a*sin(e + f*x))^(5/2)/(c + d*sin(e + f*x))^(3/2), x)

________________________________________________________________________________________